
Ajay Singh
Associate Professor
Mitchell Cancer Institute,USA
USA
Biography
Ajay Singh, Ph.D., is a tenured Associate Professor of Oncologic Sciences and Head of Health Disparities in Cancer Research Program at the University of South Alabama Mitchell Cancer Institute (USAMCI). Dr. Singh received a Master’s degree in Biotechnology from Aligarh Muslim University and graduated from the Devi Ahilya University, Indore, India. He completed post-doctoral training in the Department of Biochemistry and Molecular Biology at University of Nebraska Medical Center, Omaha, Nebraska. He later joined as a research faculty in the same department, and moved to USAMCI in 2009. Major focus of research in Dr. Singh’s lab is to understand the role of tumor microenvironment (TME) in cancer progression, metastasis and therapeutic resistance. He has received funding from state and several federal agencies (NCI, NSF and DoD) to support his research activities. Dr. Singh also serves on regional, national and international panels to review research proposals for funding considerations.
Research Interest
Major focus of Dr. Singh’s research is to delineate the molecular mechanisms underlying the aggressive and therapy-resistant behavior of cancer cells. In particular, his lab is investigating the role of microRNAs and tumor microenvironment in facilitating growth, epithelial to mesenchymal transition (EMT), metastasis and drug-resistance of pancreatic and prostate tumor cells. Earlier studies of Dr. Singh identified a mucin gene, MUC4, to be of pathological significance in pancreatic cancer progression and metastasis. MUC4 is an aberrantly expressed glycoprotein in pancreatic cancer exhibiting no expression in the normal pancreas. Recently, his team identified a novel microRNA-mediated mechanism involved in its deregulation in pancreatic cancer. Dr. Singh’s research has also revealed that CXCL12-CXCR4 signaling axis, an exemplary of tumor-microenvironment interaction, promotes drug-resistance in pancreatic cancer cells. In additional studies, his group has identified protein phosphatase 2A (PP2A) as a novel therapeutic target in prostate cancer. They have shown that PP2A activity is inversely associated with androgen-independent growth of prostate cancer cells through a novel mechanism, whereby loss of PP2A-mediated checkpoints leads to the activation of Akt and ERK and partially sustains androgen receptor signaling under steroid-deprived condition. Another area of Dr. Singh’s laboratory is to understand the molecular causes of racial disparity in several cancer types. The findings from Dr. Singh’s lab offer potential therapeutic implications for microRNAs, PP2A and tumor-microenvironment in highly aggressive and therapy-resistant pancreatic and/or prostate malignancies.